Osteoclast differentiation is affected by substrate characteristics and environmental conditions; these parameters are therefore of interest for understanding bone remodeling. As a step toward osteoclast mechanotransduction experiments, we aimed to optimize conditions for osteoclast differentiation on extendable poly(dimethylsiloxane) (PDMS) substrates. Because cells attach poorly on PDMS alone, chemical modification by covalent attachment of collagen type I was performed. Effects of collagen surface concentrations on monocyte fusion and osteoclast differentiation were examined. Osteoclasts differentiated on modified PDMS were fewer in number (by ∼50%) than controls on polystyrene physically modified by nonspecific attachment of collagen, and exhibited somewhat different morphologies. Nevertheless, for certain choices of the chemical modification procedures, appropriate differentiation on PDMS was still evident by qRT-PCR analysis for tartrate-resistant acid phosphate (TRAP) and cathepsin K (CTSK) gene expression, positive TRAP staining, fluorescent phalloidin staining showing actin ring formation and bone resorption assays. At relatively high collagen surface densities, monocyte clumps appeared on PDMS suggesting substrate-induced alterations to monocyte fusion. Covalently bound collagen can therefore be used to promote osteoclast differentiation on extendable PDMS substrates. Under appropriate conditions osteoclasts retain similar functionality as on polystyrene, which will enable future studies of osteoclast interactions with microstructured surfaces and mechanostimulation.
Read full abstract