Due to a heavy reliance on groundwater, Bangladesh is experiencing a severe decline in groundwater storage, with some areas even facing land subsidence. This study aims to investigate the relationship between groundwater storage changes and land subsidence in Bangladesh, utilizing a combination of GRACE and InSAR technologies. To clarify this relationship from a macro perspective, the study employs GRACE data merged with GLDAS to analyze changes in groundwater storage and SBAS-InSAR technology to assess land subsidence. The Dynamic Time Warping (DTW) method calculates the similarity between groundwater storage and land subsidence time series, incorporating precipitation and land cover types into the data analysis. The findings reveal the following: (1) Groundwater storage in Bangladesh is declining at an average rate of −5.55 mm/year, with the most significant declines occurring in Rangpur, Mymensingh, and Rajshahi. Notably, subsidence areas closely match regions with deeper groundwater levels; (2) The similarity coefficient between the time series of groundwater storage and land subsidence changes exceeds 0.85. Additionally, land subsidence in different regions shows an average lagged response of 2 to 6 months to changes in groundwater storage. This study confirms a connection between groundwater dynamics and land subsidence in Bangladesh, providing essential knowledge and theoretical support for further research.
Read full abstract