Stressful experiences can cause long-lasting sensitization of fear and anxiety that extends beyond the circumstances of the initial trauma. The neural mechanisms of these stress effects have been studied extensively in rats using the stress-enhanced fear learning (SEFL) paradigm, in which exposure to footshock stress potentiates subsequent fear conditioning. Here we establish a mouse version of the SEFL paradigm. Male and female 129s6 mice received four 1-mA footshocks or equivalent context exposure without shock. Shock exposure induced Pavlovian fear conditioning to the shock context and produced three more general effects: (1) suppression of open field exploration, (2) potentiated unconditioned fear of a novel tone stimulus, and (3) enhanced fear conditioning in a novel context. To determine whether these effects of footshock stress reflect generalized Pavlovian fear conditioning versus nonassociative fear sensitization, some mice received extinction training in the footshock stress context, which reduced contextual fear to the levels of unstressed control mice. Extinction restored normal open field exploration, suggesting that this effect of stress reflects generalized Pavlovian fear. In contrast, extinction failed to attenuate stress-enhanced fear, indicating that stress-enhanced fear is nonassociative and mechanistically distinct from Pavlovian fear conditioning. The effects of footshock stress were similar in male and female mice, although female mice displayed larger acute responses to fear-inducing stimuli than did males. The results demonstrate that footshock stress influences emotional behavior through distinct associative and nonassociative mechanisms, which likely involve unique neural underpinnings.