The thermal and fire behaviors of a high-performance polymeric material—polyether ether ketone (PEEK) was investigated. The TG plots of PEEK under different oxygen concentrations revealed that the initial step of thermal decomposition does not greatly depend on the oxygen level. However, oxygen concentration plays a major role in the subsequent decomposition steps. In order to understand the thermal decomposition mechanism of PEEK several methods were employed, i.e., pyrolysis–gas chromatography–mass spectrometry (Py–GC–MS), thermogravimetric analysis (TGA) coupled with a Fourier-transform infrared spectrometer (FTIR). It was observed that the initial decomposition step of the material may lead to the release of noncombustible gases and the formation of a highly crosslinked graphite-like carbonaceous structure. Moreover, during the mass loss cone calorimetry test, PEEK has shown excellent charring and fire resistance when it is subjected to an incident heat flux of 50 kW/m². Based on the fire behavior and the identification of pyrolysis gases evolved during the decomposition of PEEK, the enhanced fire resistance of PEEK was assigned to the dilution of the flammable decomposition gases as well as the formation of a protective graphite-like charred structure during its decomposition. Moreover, at 60 kW/m², ignition occurred more quickly. This is because a higher rate of release of decomposition products is achieved at such a heat flux, causing a higher concentration of combustibles, thus an earlier ignition. However, the peak of heat release rate of the material did not exceed 125 kW/m².