Biomass pyrolysis generates significant amount hazardous gases (such as CH4 , CO, and H2 ) which are counted as highly environmental pollutants. The utilization of these gases as fuel during pyrolysis could be a suitable choice for protecting the environment. Hence, we pyrolyzed biomass, jute sticks, using a customized pilot furnace, which recycled the generated gases as fuel. We further ball-milled the obtained carbon to make submicron carbon particles. The formation of submicron carbon particles was confirmed with field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Raman spectroscopy, particle size analyzer, and thermogravimetric analysis. The zeta-potential studies confirmed the high negative surface zeta potential of the prepared submicron carbon that was due to its polar functional groups (-OH, COOH, and CO), which were confirmed by Fourier-transform infrared spectroscopy. These polar functional groups facilitate their dispersion in the aqueous solution of biocompatible ethylene glycol and isopropyl alcohol to form water-based environment-friendly inkjet inks. The printing test of the developed ink was performed using a Canon printer (PIXMA; model: G3420) and compared with the performance of commercial inkjet black ink. The results indicate that the performance of the developed inkjet ink is similar to the commercial one.