The core components of the Hippo signaling pathway encompass upstream regulatory molecules, core kinase cascade complexes, and downstream transcriptional regulation complexes. This pathway modulates cellular behaviors by influencing the effector molecules of its core components and plays a pivotal role in immune regulation. Effector molecules,such as Yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), transcriptional enhanced associate domain transcriptional factor (TEAD), monopolar spindle-one binder (MOB1), large tumor suppressor (LATS), can stimulate fibroblast-like synovial cell migration and invasion in rheumatoid arthritis, regulate osteoarthritis disease progression, promote pathological new bone formation in ankylosing spondylitis, sustain submandibular gland development while delaying Sjogren's syndrome progression, mediate alpha-smooth muscle actin in systemic sclerosis, and refine the regulation of target genes associated with pulmonary fibrosis. This article provides an overview of the regulatory mechanisms involving Hippo signaling pathway-related effector molecules in the pathogenesis and progression of rheumatic immune system diseases, to serve as a reference for exploring novel therapeutic targets of rheumatic immune system diseases.
Read full abstract