Biopolymers are polymers of natural origin and are environmentally friendly, carbon neutral and less energy-intense additives that can be used for various geotechnical applications. Biopolymers like xanthan gum, carrageenan, chitosan, agar, gellan gum and gelatin have shown potential for improving subgrade strength, erosion resistance, and as canal liners and in slope stabilization. But minimal research has been carried out on cellulose-based biopolymers, particularly microcrystalline cellulose (MCC), for their application in geotechnical and geo-environmental engineering. In this study, the effect of MCC on select geotechnical properties of kaolin, a weak, highly compressible clay soil, like its liquid and plastic limits, compaction behavior, deformation behavior, unconfined compression strength (UCS) and aging, was investigated. MCC was used in dosages of 0.5, 1.0, 1.5 and 2% of the dry weight of the soil, and the dry mixing method was adopted for sample preparation. The results show that the liquid limit increased marginally by 11% but the plasticity index was nearly 74% higher than that of untreated kaolin. MCC rendered the treated soil stiffer, which is reflected in the deformation modulus, which increased with both dosage and age of the treated sample. The UCS of kaolin increased with dosage and curing period. The maximum UCS was observed for a dosage of 2% MCC at a 90-day curing period. The increase in stiffness and strength of the treated kaolin with aging points out that MCC can be a potential soil stabilizer.
Read full abstract