We prove a structural theorem for unit-disk graphs, which (roughly) states that given a set \(\mathcal{D}\) of \(n\) unit disks inducing a unit-disk graph \(G_{\mathcal{D}}\) and a number \(p\in[n]\) , one can partition \(\mathcal{D}\) into \(p\) subsets \(\mathcal{D}_{1},\dots,\mathcal{D}_{p}\) such that for every \(i\in[p]\) and every \(\mathcal{D}^{\prime}\subseteq\mathcal{D}_{i}\) , the graph obtained from \(G_{\mathcal{D}}\) by contracting all edges between the vertices in \(\mathcal{D}_{i}\backslash\mathcal{D}^{\prime}\) admits a tree decomposition in which each bag consists of \(O(p+|\mathcal{D}^{\prime}|)\) cliques. Our theorem can be viewed as an analog for unit-disk graphs of the structural theorems for planar graphs and almost-embeddable graphs proved recently by Marx et al. [SODA ’22] and Bandyapadhyay et al. [SODA ’22]. By applying our structural theorem, we give several new combinatorial and algorithmic results for unit-disk graphs. On the combinatorial side, we obtain the first Contraction Decomposition Theorem for unit-disk graphs, resolving an open question in the work by Panolan et al. [SODA ’19]. On the algorithmic side, we obtain a new algorithm for bipartization (also known as odd cycle transversal) on unit-disk graphs, which runs in \(2^{O(\sqrt{k}\log k)}\cdot n^{O(1)}\) time, where \(k\) denotes the solution size. Our algorithm significantly improves the previous slightly subexponential-time algorithm given by Lokshtanov et al. [SODA ’22] which runs in \(2^{O(k^{27/28})}\cdot n^{O(1)}\) time. We also show that the problem cannot be solved in \(2^{o(\sqrt{k})}\cdot n^{O(1)}\) time assuming the Exponential Time Hypothesis, which implies that our algorithm is almost optimal.
Read full abstract