Chronic alcohol use leads to metabolic dysfunction in adipose tissue. The underlying mechanisms and the contribution of alcohol-induced adipose tissue dysfunction to systemic metabolic dysregulation are not well understood. In our previous studies, we found that chronic alcohol feeding induces mesenteric lymphatic leakage, perilymphatic adipose tissue (PLAT) inflammation, and local insulin resistance in rats. The goal of this study was to further explore the link between alcohol-induced lymphatic leakage and PLAT immunometabolic dysregulation, locally and systemically, using in vivo and ex vivo approaches. Male rats received a Lieber-DeCarli liquid diet, of which 36% of the calories were from alcohol, for 10 weeks. Time-matched control animals were pair-fed. Adipokine levels were measured in PLAT, subcutaneous fat, plasma, and mesenteric lymph samples. Glucose tolerance was assessed after 10 weeks. Further, we used a novel ex vivo lymph-stimulated naïve PLAT explant approach to modeling lymph leakage to assess changes in adipokine secretion and expression of proinflammatory markers after stimulation with lymph from alcohol- or pair-fed animals. Our data show that chronic alcohol-fed rats presented PLAT-specific decreases in adiponectin and leptin levels, alterations in the expression of genes involved in lipid metabolic pathways, and associated impaired whole-body glucose homeostasis. Further, we found that direct naïve PLAT stimulation with lymph contents from alcohol-fed animals increased IL-6 expression in demonstrating the ability of lymph contents to differentially impact naïve adipose tissue. Overall, chronic alcohol feeding leads to depot-specific alterations in metabolic profile, impaired systemic glucose tolerance, and lymph-induced adipose tissue inflammation. The specific lymph components leading to PLAT immunometabolic dysregulation remain to be determined.
Read full abstract