We perform a complete and systematic analysis of the solution space of six-dimensional Einstein gravity. We show that a particular subclass of solutions — those that are analytic near I\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{I} $$\\end{document}+ — admit a non-trivial action of the generalised Bondi-Metzner-van der Burg-Sachs (GBMS) group which contains infinite-dimensional supertranslations and superrotations. The latter consists of all smooth volume-preserving Diff×Weyl transformations of the celestial S4. Using the covariant phase space formalism and a new technique which we develop in this paper (phase space renormalization), we are able to renormalize the symplectic potential using counterterms which are local and covariant. The Hamiltonian charges corresponding to GBMS diffeomorphisms are non-integrable. We show that the integrable part of these charges faithfully represent the GBMS algebra and in doing so, settle a long-standing open question regarding the existence of infinite-dimensional asymptotic symmetries in higher even dimensional non-linear gravity. Finally, we show that the semi-classical Ward identities for supertranslations and superrotations are precisely the leading and subleading soft-graviton theorems respectively.
Read full abstract