In this study, we apply q-symmetric calculus operator theory and investigate a generalized symmetric Sălăgean q-differential operator for harmonic functions in an open unit disk. We consider a newly defined operator and establish new subclasses of harmonic functions in complex order. We determine the sharp results, such as the sufficient necessary coefficient bounds, the extreme of closed convex hulls, and the distortion theorems for a new family of harmonic functions. Further, we illustrate how we connect the findings of previous studies and the results of this article.
Read full abstract