We investigated the influence of oral cannabidiol (CBD) on vacuous chewing movements (VCM) and oxidative stress parameters induced by short- and long-term administration of haloperidol in a rat model of tardive dyskinesia (TD). Haloperidol was administered either sub-chronically via the intraperitoneal (IP) route or chronically via the intramuscular (IM) route to six experimental groups only or in combination with CBD. VCM and oxidative stress parameters were assessed at different time points after the last dose of medication. Oral CBD (5 mg/kg) attenuated the VCM produced by sub-chronic administration of haloperidol (5 mg/kg) but had minimal effects on the VCM produced by chronic administration of haloperidol (50 mg/kg). In both sub-chronic and chronic haloperidol groups, there were significant changes in brain antioxidant parameters compared with CBD only and the control groups. The sub-chronic haloperidol-only group had lower glutathione activity compared with sub-chronic haloperidol before CBD and the control groups; also, superoxide dismutase, catalase, and 2,2-diphenyl-1-picrylhydrazyl activities were increased in the sub-chronic (IP) haloperidol only group compared with the CBD only and control groups. Nitric oxide activity was increased in sub-chronic haloperidol-only group compared to the other groups; however, the chronic haloperidol group had increased malondialdehyde activity compared to the other groups. Our findings indicate that CBD ameliorated VCM in the sub-chronic haloperidol group before CBD, but marginally in the chronic haloperidol group before CBD. There was increased antioxidant activity in the sub-chronic group compared to the chronic group.