AbstractAttosecond transient absorption resolves the instantaneous response of a quantum system as it interacts with a laser field, by mapping its sub-cycle dynamics onto the absorption spectrum of attosecond pulses. However, the quantum dynamics are imprinted in the amplitude, phase and polarization state of the attosecond pulses. Here we introduce attosecond transient interferometry and measure the transient phase, as we follow its evolution within the optical cycle. We demonstrate how such phase information enables us to decouple the multiple quantum paths induced in a light-driven system, isolating their coherent contribution and retrieving their temporal evolution. Applying attosecond transient interferometry reveals the Stark shift dynamics in helium and retrieves long-term electronic coherences in neon. Finally, we present a vectorial generalization of our scheme, theoretically demonstrating the ability to isolate the underlying anomalous current in light-driven topological materials. Our scheme provides a direct insight into the interplay of light-induced dynamics and topology. Attosecond transient interferometry holds the potential to considerably extend the scope of attosecond metrology, revealing the underlying coherences in light-driven complex systems.