Microdispersed photocatalysts based on titanium dioxide (TiO2) in the form of hollow core-shell microspheres (microcapsules) with mesoporous structure are widely demanded in modern critical technologies related to the catalysis of various chemicals, solving environmental problems, and obtaining cheap fuel. To date, a number of experimental works are known, showing that geometrical parameters of microcapsules (size, shell thickness), as well as microstructural composition (nanosized metal additives, additional inner dielectric core- the "yolk") noticeably affect their photocatalytic activity. At the same time, a valuable physical description of the optical properties of porous microcapsules has not been presented in the literature so far. Using the finite element method, we perform a full-wave theoretical simulation of the optical field inside a hollow microsphere whose shell is randomly self-assembled from multiple TiO2 nanoparticles forming an irregular nanoporous structure. We provide a unified physical explanation of the published experimental data on the optical activity of titanium-dioxide microcapsules and show that the existing theoretical models do not always give a correct interpretation of the observed empirical behaviors.
Read full abstract