This work is devoted to the formation and study of polymer composites with a segregated structure filled with single-walled carbon nanotubes (SWCNTs), reduced graphene oxide (rGO), and their mixtures. For the first time, polymer composites with a segregated structure filled with rGO/SWCNTs mixtures were obtained. A copolymer of vinylidene fluoride and tetrafluoroethylene (P(VDF-TFE)) was used as a polymer matrix. At a fixed value of the total mass fraction of carbon nanofillers (0.5, 1, and 1.5 wt%), the rGO/SWCNTs ratio was varied. The composites were examined using scanning electron microscopy, wide-range dielectric spectroscopy, and tested for the compression. The effect of the rGO/SWCNTs ratio on the electrical conductivity and mechanical properties of the composites was evaluated. It was shown that, with a decrease in the rGO/SWCNTs ratio, the electrical conductivity increased and reached the maximum at the 1 wt% filling, regardless of the samples’ composition. The maximum value of electrical conductivity from the entire data set was 12.2 S/m. The maximum of elastic modulus was 378.7 ± 3.5 MPa for the sample with 1 wt% SWCNTs, which is 14% higher than the P(VDF-TFE) elastic modulus. The composite filled with a mixture of 0.5 wt% rGO and 0.5 wt% SWCNTs reflected 70% of the electromagnetic wave energy from the front boundary, which is 14% and 50% more than for composites with 1 wt% SWCNTs and with 1 wt% rGO, respectively. The lowest transmission coefficient of ultra-high frequencies waves was obtained for a composite sample with a mixture of 0.5 wt% rGO and 0.5 wt% SWCNTs and amounted to less than 1% for a 2 mm thickness sample.
Read full abstract