We present the Open Spina Bifida Aperta (OSBA) atlas, an open atlas and set of neuroimaging templates for spina bifida aperta (SBA). Traditional brain atlases may not adequately capture anatomical variations present in pediatric or disease-specific cohorts. The OSBA atlas fills this gap by representing the computationally averaged anatomy of the neonatal brain with SBA after fetal surgical repair. The OSBA atlas was constructed using structural T2-weighted and diffusion tensor MRIs of 28 newborns with SBA who underwent prenatal surgical correction. The corrected gestational age at MRI was 38.1 ± 1.1 weeks (mean ± SD). The OSBA atlas consists of T2-weighted and fractional anisotropy templates, along with nine tissue prior maps and region of interest (ROI) delineations. The OSBA atlas offers a standardized reference space for spatial normalization and anatomical ROI definition. Our image segmentation and cortical ribbon definition are based on a human-in-the-loop approach, which includes manual segmentation. The precise alignment of the ROIs was achieved by a combination of manual image alignment and automated, non-linear image registration. From the clinical and neuroimaging perspective, the OSBA atlas enables more accurate spatial standardization and ROI-based analyses and supports advanced analyses such as diffusion tractography and connectomic studies in newborns affected by this condition.