Electrospinning MOFs nanoparticles derived porous carbon nanofibers with rational structure and design are recently as environmentally friendly and highly efficient catalytic materials for wastewater treatment. However, most of the pore-making strategies are based on precursors structural shrinkage during pyrolysis, which is a challenge to create abundant large pores and open channels. Here, a confined expansion pore-making strategy with active MOF is introduced, where energetic Zn-MOF (Zn2+/triazole) and ZIF-67 (Co2+/dimethylimidazole) are utilized as pore forming additive and precursor of active sites, respectively. The high nitrogen content gives triazole the ability to puff up and realizes N-doped during pyrolysis. Moreover, degradation mechanisms and pathways of pollutants were measured by 3D EEM, LC-MS, quenching experiments, and Fukui function. This pore-making strategy via energetic MOF local contraction and expansion provides a novel method to prepare diversiform function porous carbon materials for environmental remediation.