AbstractNatural smectites bind aflatoxins from water effectively, but the complex chemical environment in the guts of mammals and other animals can limit binding of aflatoxins. Many efforts have been made to enhance the adsorption capacity and affinity of smectites for aflatoxins in the presence of biological compounds. The main objective of the present study was to modify smectite structures by pillaring and cation exchange to enhance aflatoxin B1 adsorption capacity and selectivity. Smectite was pillared with Al and Al-Fe polycations or saturated with Ca, Mg, Zn, or Li. Structural changes in smectites with or without heat treatment were determined using X-ray diffraction and Fourier-transform infrared spectroscopy. Equilibrium aflatoxin B1 adsorption to the smectites was measured in aqueous solution and in simulated gastric fluid. Pillaring with the polycations expanded smectites in the z-direction to 18.6 Å and the expansion was stable after heating at 500°C. Changes in the Al–OH–Al infrared bands in the stretching region supported the formation of pillared clays. Migration of Mg, Zn, and Li into the octahedral sites of the smectite was observed as Mg and Zn saturation yielded a d spacing of 15 Å at 200°C which collapsed to 9.6 Å at 400°C. The 14.6 Å peak of the Li-saturated smectite collapsed to 9.6 Å at 200°C while the 15 Å Ca-saturated smectite peak was stable up to 400°C. The unheated Al- and AlFe-pillared smectites adsorbed significantly more aflatoxin B1 from an aqueous suspension than did unpillared clay. In both water and simulated gastric fluid, heat treatment decreased aflatoxin B1 adsorption to pillared smectites, but heat treatment increased aflatoxin B1 adsorption to unpillared smectites. Without heat treatment, smectites saturated with divalent cations (Ca, Mg, Zn) adsorbed more aflatoxin B1 from an aqueous suspension than the smectite saturated with a monovalent cation (Li). Ca-saturated smectite showed the greatest aflatoxin B1 adsorption, 114 g kg–1, from aqueous suspension after 400°C heat treatment. The Zn-, Mg-, and Li-saturated smectites showed maximum aflatoxin adsorption of 107, 93, and 90 g kg–1, respectively, after 200°C heat treatment. From simulated gastric fluid with pepsin, the 200°C heated, Zn-saturated smectite had maximum aflatoxin B1 adsorption of 68 g kg–1. Pillared smectites effectively adsorbed aflatoxin B1 from aqueous suspension, but Ca- and Zn-saturated smectites after heat treatment might improve the selectivity of smectites for aflatoxin B1 over pepsin and enhance the efficacy of smectite as a feed additive.
Read full abstract