The integrated multi-satellite retrievals for the global precipitation measurement (IMERG) data, which is the latest generation of multi-satellite fusion inversion precipitation product provided by the Global Precipitation Measurement (GPM) mission, has been widely applied in hydrological research and applications. However, the quality of IMERG data needs to be validated, as this technology is essentially an indirect way to obtain precipitation information. This study evaluated the performance of IMERG final run (version 6.0) products from 2001 to 2020, using three sets of gauge-derived precipitation data obtained from the Integrated Surface Database, China Meteorological Administration, and U.S. Climate Reference Network. The results showed a basic consistency in the spatial pattern of annual precipitation total between IMERG data and gauge observations. The highest and lowest correlations between IMERG data and gauge observations were obtained in North Asia (0.373, p < 0.05) and Europe (0.308, p < 0.05), respectively. IMERG data could capture the bimodal structure of diurnal precipitation in South Asia but overestimates a small variation in North Asia. The disparity was attributed to the frequency overestimation but intensity underestimation in satellite inversion, since small raindrops may evaporate before arriving at the ground but can be identified by remote sensors. IMERG data also showed similar patterns of interannual precipitation variability to gauge observation, while overestimating the proportion of annual precipitation hours by 2.5% in North America, and 2.0% in North Asia. These findings deepen our understanding of the capabilities of the IMERG product to estimate precipitation at the hourly scale, and can be further applied to improve satellite precipitation retrieval.
Read full abstract