The effective-surface approximation is extended taking into account derivatives of the symmetry-energy density per particle with respect to the mean particle density. The isoscalar and isovector particle densities in this extended effective-surface approximation are derived. The improved expressions of the surface symmetry energy, in particular, its surface tension coefficients in the sharp-edged proton-neutron asymmetric nuclei take into account important gradient terms of the energy density functional. For most Skyrme forces the surface symmetry-energy constants and the corresponding neutron skins and isovector stiffnesses are calculated as functions of the Swiatecki derivative of the nongradient term of the symmetry-energy density per particle with respect to the isoscalar density. Using the analytical isovector surface-energy constants in the framework of the Fermi-liquid droplet model we find energies and sum rules of the isovector giant-dipole resonance structure in a reasonable agreement with the experimental data, and they are compared with other theoretical approaches.
Read full abstract