The control of the solidification structure of a casting billet is directly correlated with the quality of steel. Variations in superheat can influence the transition from columnar crystals to equiaxed crystals during the solidification process, subsequently impacting the final solidification structure of the billet. In this study, a model of microstructure evolution during billet solidification was established by combining simulation and experiment, and the dendrite growth microstructure evolution during billet solidification under different superheat was studied. The results show that when the superheat is 60 K, the complete solidification time of the casting billet from the end of the 50 mm section is 252 s, when the superheat is 40 K, the complete solidification time of the casting billet is 250 s, and when the superheat is 20 K, the complete solidification time of the casting billet is 245 s. When the superheat is 20 K, the proportion of the equiaxed crystal region is higher-the highest value is 53.35%-and the average grain radius is 0.84556 mm. The proportion of the equiaxed crystal region decreases with the increase of superheat. When the superheat is 60 K, the proportion of the equiaxed crystal region is the lowest-the lowest value is 46.27%-and the average grain radius is 1.07653 mm. Proper reduction of superheat can obviously reduce the size of equiaxed crystal, expand the area of equiaxed crystal and improve the quality of casting billet.