This study was conducted during October 2021 (autumn) and April 2022 (spring) to explore the phytoplankton community structure, their distribution characteristics, and the influence of environmental factors in the coastal waters of the Southern Beibu Gulf. The 15 sampling sites were grouped based on the difference in offshore distance to analyze the temporal and spatial differences in community structure and environmental driving in the investigated sea area of the coastal waters of the Southern Beibu Gulf. Permutational multivariate analysis of variance was conducted on the sample data in time and space, revealing that there is no significant difference in space (p > 0.05), but there is significant difference in time (p < 0.05). Notably, water pressure, pH, chemical oxygen demand, nitrite, and labile phosphate were higher in autumn, while total ammonia nitrogen, dissolved oxygen, and suspended solids were significantly higher in spring. Additionally, the study identified 87 phytoplankton species belonging to 6 phyla, dominating by Bacillariophyta, followed by Dinophyta and Cyanophyta. The phytoplankton density, Shannon Weiner's diversity index (H'), Pielou's evenness index (J), and Margalef's richness index (D) ranged from 84.88 to 4675.33 cells L-1, 0.56 to 2.58, 0.26 to 0.89, and 1.21 to 3.64, respectively. Permutational multivariate analysis of variance showed non-significant spatial differences in phytoplankton composition (p > 0.05) but seasonal differences (p < 0.05). Furthermore, canonical correspondence analysis (CCA) identified pH, dissolved oxygen, suspended solids, chemical oxygen demand, nitrite, and labile phosphate as key environmental factors influencing the phytoplankton community structure (p < 0.05). In this study, the dynamic changes of phytoplankton community structure and environmental factors in the southern coastal waters of Beibu Gulf were analyzed in detail from two aspects of time and space. The key environmental factors to protect the ecological environment in the southern coastal area of Beibu Gulf were found out. It provides a reference method and theoretical basis for the management and protection of Beibu Gulf and other tropical marine environment.
Read full abstract