In this study, we investigated the phase structure, Curie temperature, dielectric properties, piezoelectricity, and energy-storage properties of BiFeO3 (BFO)-modified (Ba0.95Ca0.05) (Ti0.89Sn0.11)O3 (BCTSO) ceramics using both experimental and theoretical methods. The results indicated that the lattice distortion and chaotic distribution of the local charge increased with the BFO content, resulting in a phase transition and transformation from a ferroelectric to a relaxing ferroelectric. First-principles calculations revealed that the Curie temperature decreased with increasing BFO content, primarily because of an increase in the ground state energy. The variation in the permittivity of the BCTSO-xBFO ceramics with temperature and frequency is affected by the phase structure and Maxwell-Wagner interface polarisation, respectively. The electrical modulus measurements indicated that BCTSO-xBFO exhibited non-Debye-type dielectric relaxation for x = 0.0, 0.1, and 0.5 %, whereas BCTSO-xBFO showed Debye-type dielectric relaxation for x = 0.9%.
Read full abstract