Ultrasonic backscattered signals from blood contain frequency-dependent information that can be used to obtain quantitative parameters reflecting the aggregation level of red blood cells (RBCs). The approach is based on estimating structural aggregate parameters by fitting the spectrum of the backscattered radio-frequency echoes from blood to an estimated spectrum considering a theoretical scattering model. In this study, three scattering models were examined: a new implementation of the Gaussian model (GM), the structure factor size estimator (SFSE), and the new effective medium theory combined with the structure factor model (EMTSFM). The accuracy of the three scattering models in determining mean aggregate size and compactness was compared by 2-D and 3-D computer simulations in which RBC structural parameters were controlled. Two clustering conditions were studied: 1) the aggregate size varied and the aggregate compactness was fixed in both 2-D and 3-D cases, and 2) the aggregate size was fixed and the aggregate compactness varied in the 2-D case. For both clustering conditions, the EMTSFM was found to be more suitable than GM and SFSE for characterizing RBC aggregation.