An effective structural health monitoring method of traction motor bearings is a powerful guarantee for the safety operation of high-speed trains. However, it is exceptionally difficult to detect bearing fault characteristics from the vibration signals of traction motor bearings operating at high rotational speeds. In this scenario, a generalized Shannon entropy sparse wavelet packet transform (GSWPT) for fault detection of motor bearings is proposed in this paper. Firstly, a generalized Shannon entropy sparse regularization method is proposed to obtain sparse wavelet reconstruction coefficients by extending the definition of the Shannon information entropy, and the non-convex sparse regularization function is minimized by synergistic swarm optimization algorithm. Then, the wavelet node coefficients are weighted according to the second-order cyclostationarity index of the wavelet packet node to further enhance the sparsity of the reconstructed signal. Moreover, the optimal decomposition level of GSWPT is adaptively selected by the maximum sparsity and cyclostationarity criterion. Particularly, in order to verify the bearing fault detection performance of GSWPT in practical engineering, a bearing fault dynamic model of traction motor in high-speed train was established based on Hertz contact theory and the fourth-order Runge-Kutta method to obtain simulated data under strong Gaussian white noise, and a corresponding test platform was constructed to collect experimental data under different operating conditions. Finally, the applications on the simulated and experimental signals of traction motor bearings in high-speed trains demonstrate that GSWPT significantly outperforms the conventional wavelet packet transform, dual-tree complex wavelet packet transform, blind deconvolution, modal decomposition, and Infogram methods to some extent for fault detection.
Read full abstract