Carbonatoperoxovanadates are considered as promising functional materials in optoelectronic devices due to their excellent optical properties, particularly strong second-harmonic generation (SHG) response. However, the relationship between their geometric structures and optical properties remains unclear. Herein, the structural, electronic, and optical properties of carbonatoperoxovanadates A3VO(O2)2CO3 (A=K, Rb, and Cs) were investigated using first-principles calculation. Results suggest that high-density and parallel arrangement of nonlinear optical active [VO(O2)2CO3] units are conducive to generating large SHG response in A3[V(O2)2O]CO3. Optical anisotropy was observed. Birefringence values for A3[V(O2)2O]CO3 were comparable to those of commonly used infrared nonlinear optical materials. Specifically, results of tiny optical characteristics (local dipole moments, HUMO-LUMO gap, polarizability anisotropy, and hyperpolarizability) indicate that asymmetry [VO(O2)2CO3] is an excellent nonlinear optical active functional unit, owing to the synergistic effect between its non-centrosymmetric nonlinear optical elements. This study elucidates the structure-property relationship of carbonatoperoxovanadates, offering valuable insights for designing novel high-performance SHG materials.
Read full abstract