African savanna elephants are a highly mobile species that ranges widely across the diversity of ecosystems they inhabit. In xeric environments, elephant movement patterns are largely dictated by the availability of water and suitable forage resources, which can drive strong seasonal changes in their movement behavior. In this study, we analyzed a unique movement dataset from 43 collared elephants, collected over a period of 10 years, to assess the degree to which seasonal changes influences home range size of elephants in the semi-arid, Laikipia-Samburu ecosystem of northern Kenya. Auto-correlated Kernel Density Estimation (AKDE) was used to estimate elephants' seasonal home range size. For each individual elephant, we also calculated seasonal home range shifts, as the distance between wet season home range centroids and dry season home range centroids. Core areas (50% AKDE isopleths) of all individual elephants ranged from 3 to 1743 km2 whereas total home range sizes (the 95% AKDE isopleths) ranged between 15 and 10,677 km2. Core areas and home range sizes were 67% and 61% larger, respectively, during the wet season than during the dry season. On average, the core area centroids for all elephants were 17 km away from the nearest river (range 0.2-150.3 km). Females had their core areas closer to the river than males (13.5 vs. 27.5 km). Females differed from males in their response to seasonal variation. Specifically, females tended to occupy areas farther from the river during the wet season, while males occupied areas further from the river during the dry season. Our study highlights how elephants adjust their space use seasonally, which can be incorporated into conservation area planning in the face of increased uncertainty in rainfall patterns due to climate change.
Read full abstract