Nitrophenols are a class of environmental contaminants that exhibit strong absorption at atmospherically relevant wavelengths, prompting many studies of their photochemical degradation rates and mechanisms. Despite the importance of photochemical reactions of nitrophenols in the environment, the ultrafast processes in electronically excited nitrophenols are not well understood. Here, we present an experimental study of ultrafast electron dynamics in 4-nitrocatechol (4NC), a common product of biomass burning and fossil fuel combustion. The experiments are accompanied by time-dependent quantum mechanical calculations to help assign the observed transitions in static and transient absorption spectra and to estimate the rates of singlet-to-triplet intersystem crossing. Our results suggest that electronic triplet states are not efficiently populated upon 340 nm excitation, as efficient proton transfer occurs in the excited state on a time scale of a few picoseconds in water and tens of picoseconds in 2-propanol. This suggests that triplet states do not play a significant role in the photochemical reactions of 4NC in the environment and, by extension, in nitrophenols in general. Instead, consideration should be given to the idea that this class of molecules may serve as strong photoacids.
Read full abstract