IntroductionThis study aimed to explore the characteristics of post-stroke sleep dysfunction and verify their association with gut dysbiosis and the related amino acid metabolism disorders. This was achieved by using fecal microbiota transplantation (FMT) in a non-human primate stroke model. MethodsTwenty adult male cynomolgus monkeys were divided into the sham (n = 4), middle cerebral artery occlusion (MCAO, n = 5), MCAO + FMT (n = 3), and donor (n = 8) groups. The MCAO+FMT group received FMT at post-MCAO week 4. Sleep parameters, gut microbiota, gamma-aminobutyric acid (GABA), and glutamine (Gln) in the cerebrospinal fluid (CSF) were measured at baseline and postoperative weeks 4, 8, and 12. ResultsAt postoperative weeks 4, 8, and 12, the MCAO group showed decreased sleep efficiency, measured as the percentage of sleep during the whole night (82.3 ± 3.2 % vs 91.3 ± 2.5 %, 79.0 ± 3.75 % vs 90.8 ± 3.2 %, and 69.5 ± 4.8 % vs 90.5 ± 2.7 %; all P < 0.05), lower relative abundance of Lactobacillus (all P < 0.05), and reduced GABA concentrations in the CSF (317.3 ± 30.6 nmol/L vs 437.7 ± 25.6 nmol/L, 303.1 ± 48.9 nmol/L vs 4 40.9 ± 37.8 nmol/L, and 337.9 ± 49.4 nmol/L vs 457.4 ± 39.2 nmol/L; all P < 0.05) compared with the sham group. Sleep efficiency at post-FMT weeks 4 and 8 (84.7 ± 1.1 % vs 79.0 ± 3.75 %, and 84.1 ± 2.0 % vs 69.5 ± 4.8 %; both P < 0.05) and GABA concentration in the CSF at post-FMT week 4 (403.1 ± 25.4 nmol/L vs 303.1 ± 48.9 nmol/L, P < 0.05) was higher in the MCAO+FMT group than in the MCAO group. ConclusionsPost-stroke sleep dysfunction in monkeys is characterized by impaired sleep coherence, associated with decreased levels of probiotics such as Lactobacillus, GABA, and Gln in the CSF and can be ameliorated using FMT.