Burstsort is a trie-based string sorting algorithm that distributes strings into small buckets whose contents are then sorted in cache. This approach has earlier been demonstrated to be efficient on modern cache-based processors [Sinha & Zobel, JEA 2004]. In this article, we introduce improvements that reduce by a significant margin the memory requirement of Burstsort: It is now less than 1% greater than an in-place algorithm. These techniques can be applied to existing variants of Burstsort, as well as other string algorithms such as for string management. We redesigned the buckets, introducing sub-buckets and an index structure for them, which resulted in an order-of-magnitude space reduction. We also show the practicality of moving some fields from the trie nodes to the insertion point (for the next string pointer) in the bucket; this technique reduces memory usage of the trie nodes by one-third. Importantly, the trade-off for the reduction in memory use is only a very slight increase in the running time of Burstsort on real-world string collections. In addition, during the bucket-sorting phase, the string suffixes are copied to a small buffer to improve their spatial locality, lowering the running time of Burstsort by up to 30%. These memory usage enhancements have enabled the copy-based approach [Sinha et al., JEA 2006] to also reduce the memory usage with negligible impact on speed.