Particulate matter (PM) emissions from anthropogenic sources contribute substantially to air pollution. The unequal adverse health effects caused by source-emitted PM emphasize the need to consider the discrepancy of PM-bound chemicals rather than solely focusing on the mass concentration of PM when making air pollution control strategies. Here, we present a dataset about chemical compositions of real-world PM emissions from typical anthropogenic sources in China, including industrial (power, industrial boiler, iron & steel, cement, and other industrial process), residential (coal/biomass burning, and cooking), and transportation sectors (on-road vehicle, ship, and non-exhaust emission). The data was obtained under the same strict quality control condition on field measurements and chemical analysis, minimizing the uncertainty caused by different study approaches. The concentrations of PM-bound chemical components, including toxic elements and PAHs, exhibit substantial discrepancies among different emission sectors. This dataset provides experimental data with informative inputs to emission inventories, air quality simulation models, and health risk estimation. The obtained results can gain insight into understanding on source-specific PMs and tailoring effective control strategies.
Read full abstract