An esophago-esophageal contractile reflex (EECR) of the cervical esophagus has been identified in humans. The aim of this study was to characterize and determine the mechanisms of the EECR. Cats (n = 35) were decerebrated, electrodes were placed on pharynx and cervical esophagus, and esophageal motility was recorded using manometry. All areas of esophagus were distended to locate and quantify the EECR. The effects of esophageal perfusion of NaCl or HCl, vagus nerve or pharyngoesophageal nerve (PEN) transection, or hexamethonium administration (5 mg/kg iv) were determined. We found that distension of the esophagus at all locations activated EECR rostral to stimulus only. EECR response was greatest when the esophagus 2.5-11.5 cm from cricopharyngeus (CP) was distended. HCl perfusion activated repetitively an EECR-like response of the proximal esophagus only within 2 min, and after ~20 min EECR was inhibited. Transection of PEN blocked or inhibited EECR 1-7 cm from CP, and vagotomy blocked EECR at all locations. Hexamethonium blocked EECR at 13 and 16 cm from CP but sensitized its activation at 1-7 cm from CP. EECR of the entire esophagus exists, which is directed in the orad direction only. EECR of striated muscle esophagus is mediated by vagus nerve and PEN and inhibited by mechanoreceptors of smooth muscle esophagus. EECR of smooth muscle esophagus is mediated by enteric nervous system and vagus nerve. Activation of EECR of the striated muscle esophagus is initially sensitized by HCl exposure, which may have a role in prevention of supraesophageal reflux.NEW & NOTEWORTHY An esophago-esophageal contractile reflex (EECR) exists, which is directed in the orad direction only. EECR of the proximal esophagus can appear similar to and be mistaken for secondary peristalsis. The EECR of the striated muscle is mediated by the vagus nerve and pharyngoesophageal nerve and inhibited by mechanoreceptor input from the smooth muscle esophagus. HCl perfusion initially sensitizes activation of the EECR of the striated muscle esophagus, which may participate in prevention of supraesophageal reflux.