Stretch is essential for maintaining the contractile phenotype of vascular smooth muscle cells, and small non-coding microRNAs are known to be important in this process. Using a Dicer knockout model, we have previously reported that microRNAs are essential for stretch-induced differentiation and regulation of L-type calcium channel expression. The aim of this study was to investigate the importance of the smooth muscle-enriched miR-143/145 microRNA cluster for stretch-induced differentiation of the portal vein. Contractile force and depolarization-induced calcium influx were determined in portal veins from wild-type and miR-143/145 knockout mice. Stretch-induced contractile differentiation was investigated by determination of mRNA expression following organ culture for 24h under longitudinal load by a hanging weight. In the absence of miR-143/145, stretch-induced mRNA expression of contractile markers in the portal vein was reduced. This was associated with decreased amplitude of spontaneous activity and depolarization-induced contractile and intracellular calcium responses, while contractile responses to 5-HT were largely maintained. We found that these effects correlated with a reduced basal expression of the pore-forming subunit of L-type calcium channels and an increased expression of CaMKIIδ and the transcriptional repressor DREAM. Our results suggest that the microRNA-143/145 cluster plays a role in maintaining stretch-induced contractile differentiation and calcium signalling in the portal vein. This may have important implications for the use of these microRNAs as therapeutic targets in vascular disease.