The heterogeneity of the microstructure and mechanical properties of safe-end dissimilar metal welded joints (DMWJs) presents a challenge to the quantitative prediction of the stress corrosion cracking (SCC) growth rate directly from laboratory data. This study investigates the effect of the heterogeneity of the mechanical properties of the 316L-welded heat-affected zone (HAZ) in safe-end DWMJs on the SCC tip stress-strain field and the SCC growth rate. First, based on the analysis of microstructures in localized regions within the 316L-welded HAZ and the acquisition of material mechanical properties through microhardness testing, a user-defined material subroutine was developed to characterize the heterogeneous material properties within the 316L-welded HAZ. Then, using this finite element model with an inhomogeneous distribution of the mechanical properties of the material, the crack tip strain rates (CTSRs) at different locations within the 316L-welded HAZ were obtained. In conjunction with the FRI model, the SCC growth rates at various locations within the HAZ were determined. The results show that the closer to the 52Mw/316L fusion boundary within the 316L-welded HAZ, the greater the yield strength of the material and the higher the CTSR and predicted SCC growth rates at the characteristic distance.
Read full abstract