Mg alloy is one of the most suitable biodegradable materials for making modern LCP. This is due to the osseointegration property, low elastic modulus, the presence in the human bone, and the excellent biodegradable nature. But it lacks much-needed strength compared to conventional (Ti, SS alloys) implants due to low strength of biodegradable (Mg, Zn alloys) materials. The problem can be solved by either biodegradable material development or by design improvement of existing LCP. Improving the design is a better way to improve the LCP. This paper aims to improve the design of existing LCP through the addition of features and their implications by analysing the stress distribution across the plates for improved biodegradable implant mechanical performance. Various designs have been developed and each has certain advantages over conventional LCP which ACT and 4PBT have been demonstrated via the FEM. They are best suited for femur bone fracture treatment replacing conventional metal alloys LCP. The CTLCP, SLCP, and SELCP have improved performance at stress concentration regions while STLCP especially has 36.74% less stress generation than conventional LCP along with excellent biodegradable performance. The designs are discussed in detail to analyse the effect of added features in conventional LCP.
Read full abstract