This study was conducted to evaluate the distribution of stress in the bone around the natural tooth, endodontically treated tooth having post and core, and implant as an abutment in different combinations in fixed partial prosthesis using two-dimensional finite element analysis (FEA). Six models were simulated using ANSYS Modeller19. All six models were divided into 12 zones and 4 lines, and stress values were calculated and compared. The study combinations were - tooth supported fixed partial prosthesis, fixed partial prosthesis having the combination of tooth and post- and core-treated tooth, fixed partial prosthesis with the combination of tooth and implant, fixed partial prosthesis having the combination of implant and post- and core-treated tooth, fixed partial prosthesis with the combination of post- and core-treated tooth on both sides, and fixed partial prosthesis having the combination of implant on both sides. On comparing the stress values, the maximum stress value was observed in fixed partial prosthesis having the combination of implant on both sides (306.2434 MPa) followed by Model 4 (223.1255 MPa), Model 3 (154.3952 MPa), Model 5 (136.9041 MPa), Model 2 (116.2034 MPa), and least stress seen in Model 1 (99.6209 MPa), and minimum in tooth supported fixed partial prosthesis (99.6209 MPa). This study concluded that stress concentration in bone was maximum when the implant was used as an abutment in fixed partial prosthesis. The least stress was seen in bone around the natural tooth due to the dampening effect of the periodontal ligament. Further, the modulus of elasticity of a post acts as a vital parameter in the distribution of stress in post- and core-treated tooth. The stress concentration in the bone around the abutments affects the longevity of the prosthesis, hence, the clinically appropriate combination of the abutments should be considered for a fixed partial prosthesis.