Prim-O-glucosylcimifugin (POG) is a chromone derived primarily from Saposhnikovia divaricata (Turcz) Schischk and Cimicifuga simplex. Previous research has shown that POG possesses antibacterial, anticancer, anti-inflammatory, antioxidant, anticonvulsant, antipyretic, and analgesic properties. However, the specific impact of POG on influenza-virus-induced pneumonia is not well understood. In this study, we investigated the protective effects and underlying mechanisms of POG in pneumonia caused by influenza A virus (IAV). In vitro, POG was found to have a protective effect against infections caused by the respiratory viruses respiratory syncytial virus (RSV), human coronavirus OC43, and influenza A virus. POG inhibited A/FM/1/1947(H1N1) infection with an EC50 ranging from 3.01 to 10.43 in vitro. Intraperitoneal infection of mice with POG at a dose of 5 or 10 mg/kg resulted in a reduction in IAV-induced pneumonia, as evidenced by decreased pulmonary edema, improved lung histopathology, and reduced inflammatory cell accumulation. At the higher dose (10 mg/kg), POG treatment significantly increased survival rates, decreased viral titres in the lungs, improved lung histology, and reduced lung inflammation in IAV-infected mice. POG also effectively alleviated pulmonary fibrosis by reducing the levels of fibrotic markers (hydroxyproline [Hyp] and transforming growth factor β1 [TGF-β1]) and suppressing the expression of alpha smooth muscle actin (α-SMA), p focal adhesion kinase (p-FAK), and TGF-β1 in lung tissues. In addition, POG inhibited the expression of the RELA proto-oncogene (RELA), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta (PIK3CD), and mitogen- and stress-activated protein kinase 2 (MSK2) in lung tissues. These results indicate that POG may have a protective effect against IAV-induced pneumonia by downregulating the TGF-β1/PI3KCD/MSK2/RELA signalling pathway in the lungs.
Read full abstract