Bacillus cereus sensu lato can contaminate food and cause food poisoning by producing toxins such as cereulide, toxin BL, and cytotoxin K. In this study, we retrospectively analyzed B. cereus sensu lato from retail food products and food poisoning cases using PCR methods to determine their virulence profiles. A new toxin profile, encoding all four toxins (hbl, nhe, cytK, ces), was found in 0.4% of isolates. The toxin profiles, classified into A-J, revealed that 91.8% harbored nhe genes, while hbl, cytK, and ces were detected in 43.8%, 46.9%, and 4.2% of isolates, respectively. Whole-genome sequencing (WGS) identified four distinct species within the B. cereus group, with 21 isolates closely related to B. cereus sensu stricte, 25 to B. mosaicus, 2 to B. toyonensis, and 1 to B. mycoides. Three novel sequence types (STs 3297, 3298, 3299) were discovered. Antibiotic resistance genes were common, with 100% of isolates carrying beta-lactam resistance genes. Fosfomycin (80%), vancomycin (8%), streptothricin (6%), tetracycline (4%), and macrolide resistance (2%) genes were also detected. These results highlight the genetic diversity and antibiotic resistance potential of B. cereus sensu lato strains in Polish food products.