This study aimed to investigate the inhibitory effect of a PRG Barrier Coat on biofilm formation and structure by Streptococcus mutans and propose an effective method for preventing dental caries. Streptococcus mutans MT8148 biofilms were obtained from hydroxyapatite disks with and with- out a PRG Barrier Coat. Scanning electron microscopy (SEM) was used to observe the 12- and 24-h-cultured biofilms, while reverse-transcription polymerase chain reaction (qRT-PCR) was used to quantify caries-related genes. Biofilm adhe- sion assessments were performed on glass. Statistical analysis was performed using a two-sample t-test. A statistically significant difference in Streptococcus mutans biofilm adhesion rate was observed between the con- trol and PRG Barrier Coat-coated samples (p < 0.01). However, there was no statistically significant difference in total bacter- ial count or biofilm volume (p > 0.05). SEM revealed that the PRG Barrier Coat inhibited biofilm formation by Streptococcus mutans. Real-time RT-PCR revealed that the material restricted the expression of genes associated with caries-related bio- film formation. However, the suppression of gtfD and dexB differed from that of other genes. PRG Barrier Coat suppressed biofilm formation by Streptococcus mutans by inhibiting the expression of in- soluble glucan synthase, which is associated with primary biofilm formation. The material also affected gene expression and altered the biofilm structure. Tooth surface-coating materials, such as PRG Barrier Coat, may improve caries preven- tion in dental practice.
Read full abstract