With the depletion of shallow oil and gas resources, wells are being drilled to deeper and deeper depths to find new hydrocarbon reserves. This study presents the selection and optimization process of the cement slurries to be used for the deepest well ever drilled in China, with a planned vertical depth of 11,100 m. The bottomhole circulating and static temperatures of the well were estimated to be 210 °C and 220 °C, respectively, while the bottomhole pressure was estimated to be 130 MPa. Laboratory tests simulating the bottomhole conditions were conducted to evaluate and compare the slurry formulations supplied by four different service providers. Test results indicated that the inappropriate use of a stirred fluid loss testing apparatus could lead to overdesign of the fluid loss properties of the cement slurry, which could, in turn, lead to abnormal gelation of the cement slurry during thickening time tests. The initial formulation given by different service providers could meet most of the design requirements, except for the long-term strength stability. The combined addition of crystalline silica and a reactive aluminum-bearing compound to oil well cement is critical for preventing microstructure coarsening and strength retrogression at 220 °C. Two of the finally optimized cement slurry formulations had thickening times more than 4 h, API fluid loss values less than 50 mL, sedimentation stability better than 0.02 g/cm3, and compressive strengths higher than 30 MPa during the curing period from 1 d to 30 d.