Macro-channeled porous hydroxyapatite (HA) scaffolds were fabricated by a polymer foam replication method. Composites were prepared by coating the surface of HA scaffolds with polycaprolactone (PCL) in the presence of graphene nanopowders (in the form of flakes) and multi-walled carbon nanotubes (MWCNTs) at different concentrations. Compression strength of the scaffolds was investigated as a function of additive concentration. Results revealed that the use of PCL coating increased the mechanical strength of HA scaffolds. Besides, addition of graphene or MWCNTs further improved the compression strength of the constructs when they were used at 0.25 wt% and a decrease was observed at higher graphene and MWCNT concentrations. Highest mechanical performance was obtained in composite HA scaffolds involving MWCNTs. In vitro acellular bioactivity experiments revealed that both graphene and MWCNT-incorporated HA scaffolds showed higher bioactivity in simulated body fluid compared to bare scaffolds. However, HA formation ability was more pronounced with MWCNTs compared to graphene nanoflakes where they were possibly acted as an effective nucleation sites to induce the formation of a biomimetic apatite. Additionally, scaffolds prepared in the study were found to be nontoxic to the mouse bone marrow mesenchymal stem cells.
Read full abstract