For insects, life in water is challenging because oxygen supply is typically low compared with in air. Oxygen limitation may occur when oxygen levels or water flows are low or when warm temperatures stimulate metabolic demand for oxygen. A potential mechanism for mitigating oxygen shortages is behavior - moving to cooler, more oxygenated or faster flowing microhabitats. Whether stream insects can make meaningful choices, however, depends on: (i) how temperature, oxygen and flow vary at microspatial scales and (ii) the ability of insects to sense and exploit that variation. To assess the extent of microspatial variation in conditions, we measured temperature, oxygen saturation and flow velocity within riffles of two streams in Montana, USA. In the lab, we then examined preferences of nymphs of the stonefly Pteronarcys californica to experimental gradients based on field-measured values. Temperature and oxygen level varied only slightly within stream riffles. By contrast, flow velocity was highly heterogeneous, often varying by more than 125 cm s-1 within riffles and 44 cm s-1 around individual cobbles. Exploiting micro-variation in flow may thus be the most reliable option for altering rates of oxygen transport. In support of this prediction, P. californica showed little ability to exploit gradients in temperature and oxygen but readily exploited micro-variation in flow - consistently choosing higher flows when conditions were warm or hypoxic. These behaviors may help stream insects mitigate low-oxygen stress from climate change and other anthropogenic disturbances.
Read full abstract