Nitrogen vacancy (NV) centers, atomic spin defects in diamond, represent an active contender for advancing transformative quantum information science (QIS) and innovations. One of the major challenges for designing NV-based hybrid systems for QIS applications results from the difficulty of realizing local control of individual NV spin qubits in a scalable and energy-efficient way. To address this bottleneck, we introduce magnetic tunnel junction (MTJ) devices to establish coherent driving of an NV center by a resonant MTJ with voltage controlled magnetic anisotropy. We show that the oscillating magnetic stray field produced by a resonant micromagnet can be utilized to effectively modify and drive NV spin rotations when the NV frequency matches the corresponding resonance conditions of the MTJ. Our results present a new pathway to achieve all-electric control of an NV spin qubit with reduced power consumption and improved solid-state scalability for implementing cutting-edge QIS technological applications.