Understanding the dynamics of sediment transport and deposition in natural landscapes is critical to developing cost-effective mitigation measures to control soil erosion and protect ecosystems. However, none of a single existing model can quantify sediment delivery ratio (SDR) and the impact factors such as vegetation and geomorphology, especially in a complex landscape. In this case study, we applied an integrated approach including the revised universal soil loss equation (RUSLE) and the index of connectivity (IC) to assess hillslope erosion and SDR, namely RUSLE-IC-SDR, across a complex landscape in the Lower Snowy River area, Australia. The RUSLE factors were derived from a high-resolution (2 m) digital elevation model (DEM), digital soil maps, high-resolution rainfall data and remotely sensed fractional vegetation cover. A seven-class landform classification was delineated from the high-resolution DEM using a fuzzy logic landform model (FLAG). We further examined the impacts of rainfall, vegetation cover and geomorphology on sediment dynamics and distribution across the study area. Field and laboratory data from 10 plot sites across the study area were collected and used for model validation. This case study showed that the RUSLE-IC-SDR approach can assess the overall sediment budget and the impacts of rainfall, vegetation cover and geomorphology across a complex landscape. Findings from this study can identify and track the areas likely to generate high sediment yield for developing ecological restoration, feral animal management and other catchment management measures.