Macrophomina phaseolina, the causal agent of charcoal rot, is one of the most destructive soil-borne pathogens that affect the global strawberry industry. Resistant cultivars are critical for ensuring the profitability of strawberry production without the protection historically provided by methyl bromide. Previously, three loci, namely, FaRMp1, FaRMp2, and FaRMp3, associated with quantitative resistance to Macrophomina phaseolina have been identified and validated across diverse populations and environments. Among those, the locus with the largest effect, FaRMp3, was initially detected in crosses with an exotic Fragaria ×ananassa selection. We introgressed the favorable FaRMp3 allele into elite germplasm in the University of Florida strawberry breeding program already segregating for FaRMp1 and FaRMp2 and confirmed its phenotypic effects across various genetic backgrounds. Subsequently, we developed a high-throughput genotyping assay to facilitate the transfer and selection of FaRMp3 in breeding populations via marker-assisted selection. Given that three quantitative trait loci (QTL) contribute to partial resistance to Macrophomina phaseolina, stacking them within a single genotype presents a potential strategy for enhancing resistance. We screened 564 individuals that segregate for favorable alleles at all three QTL to assess their effects singly and in combination across multiple genetic backgrounds and production seasons. Inoculated field trials revealed that the three QTL cumulatively enhanced resistance levels, and that two-way QTL combinations including FaRMp3 provide increased protection against the pathogen. Pyramiding all three loci achieved the strongest resistance and could provide substantial economic value to the strawberry industry.
Read full abstract