Developing novel heteroatoms co-doped biomass porous carbon with low-cost, tunable physical/chemical properties, and environmental friendliness is an important candidate to face energy shortage and environmental pollution currently. Herein, a novel solvothermal avenue was designed using triethanolamine as self-doping solvent to treat rice straw powders with KOH. The rice straw with triethanolamine derived carbon (RSTCs-1) possessed hierarchical porous structure, N/O diatomic doping, and large specific surface area. The electrochemical energy storage performance of RSTCs-1 was evaluated in the systems of supercapacitors, aqueous zinc ion hybrid supercapacitors (AZHSs), and lithium-ion batteries (LIBs) respectively. As the results, the RSTCs-1 based symmetric supercapacitor exhibited the maximum energy density of ca. 98.4 Wh·kg−1 with the excellent cycling stability. Moreover, both RSTCs-1 AZHSs and RSTCs-1 LIBs achieved the relative high discharge specific capacities of ca. 407.1 and 1906.7 mAh·g−1 at current density of 0.1 A·g−1. These results highlighted the huge potential of the obtained with notable electrochemical performance acting as multifunctional electrode material for the different energy storage devices.
Read full abstract