This paper deals with an inspection game of Customs and a smuggler during some days. Customs has two options of patrolling or not. The smuggler can take two strategies of shipping its cargo of contraband or not. Two players have several opportunities to take an action during a limited number of days but they may discard some of the opportunities. When the smuggling coincides with the patrol, there occurs one of three events: the capture of the smuggler by Customs, a success of the smuggling and nothing new. If the smuggler is captured or no time remains to complete the game, the game ends. There have been many studies on the inspection game so far by the multi-stage game model, where both players at a stage know players’ strategies taken at the previous stage. In this paper, we consider a two-person zero-sum single-shot game, where the game proceeds through multiple periods but both players do not know any strategies taken by their opponents on the process of the game. We apply dynamic programming to the game to exhaust all equilibrium points on a strategy space of player. We also clarify the characteristics of optimal strategies of players by some numerical examples.