Hydrogels, due to their excellent microstructure and mechanical strength, have become a novel biomaterial in wound dressing. However, plant proteins have never been considered because of their poor original gelling performances and insufficient rheological properties. Here, we reported the fabrication of a plant protein-based thermal-reversible gel using a reverse micelle-extracted hemp protein isolate (HPI). A systematic study was conducted to fully reveal their microstructure, rheological properties, and anti-inflammatory effect to lay a foundation for this newly developed plant protein hydrogel as a potential natural wound dressing. By modulating protein concentration (4% HPI) and temperature (85 °C), a thermal-reversible HPI gel appeared as a filament structure with the major molecular driving force of hydrophobic interactions and hydrogen bonds. By characterizing the rheological properties, lower gel strength and wider linear viscoelastic regime were determined in the thermal-reversible HPI gel compared with a thermal-irreversible HPI gel. Besides, large amplitude oscillatory shear data identified the thermal-reversible gel as a soft gel which demonstrated intracycle strain stiffening and shear thinning behavior. Moreover, the thermal-reversible HPI gel is nontoxic and has benefits in neutrophil growth with injectability and perfect wound coverage. This study opens a novel means to form a natural thermal-reversible hydrogel that can be a new material source for wound dressing.