Extending the fatigue life of metals is a critical concern for maintaining material and component integrity in engineering systems. The integration of gradient structures within materials represents a highly promising approach to enhance the fatigue properties in metallic materials, while a detailed mechanistic understanding of the fatigue damage evolution of such structures is yet to be developed. Here, we report that the surface-nanolaminated gradient structure comprised of nanolaminates and hierarchical twins imparts remarkable resistance to both low-cycle and high-cycle fatigue. A dislocation-based strain gradient crystal plasticity model is developed to investigate the strengthening and damage mechanisms of our gradient structure. The size dependence of the initial dislocation density, its evolution and back stress hardening are taken into account and verified by the experimental data. The simulation results reveal that the strain delocalization and back stress hardening induced by the structure gradient significantly mitigate the fatigue damage accumulation. Additionally, in contrast to conventional gradient structures, the mechanical stability of the present structure enables these strengthening mechanisms to persist until crack initiation. These effects, combined with the sequential toughening mechanisms activated in the surface-nanolaminated gradient structure, ensure a marked life extension under low-cycle fatigue (by a factor of four), outperforming conventional gradient and other microstructural design strategies. Finally, a multiscale anti-fatigue design principal for damage homogenization is given based on the prior quantitative analysis.
Read full abstract