The biogeochemical cycling of arsenic (As) is often intertwined with iron (Fe) and sulfur (S) cycles, wherein Fe(III)- and sulfate-reducing bacteria (SRB) play a crucial role. Here, we isolated strain DS-1, a strictly anaerobic Fe(III)- and sulfate-reducing bacterium, from As-contaminated paddy soil. Using 16S rRNA gene sequence analysis, strain DS-1 was identified as a member of the genus Desulfovibrio. Strain DS-1 utilized energy derived from ferrihydrite reduction to support its cellular growth. Under anoxic sulfate-reducing conditions, the presence of strain DS-1 significantly increased As mobilization compared to sulfate-free conditions. Mechanistically, SRB-produced sulfide reacts with Fe(III) to form FeS, which disrupts Fe(III) minerals, thereby enhancing As release. These findings highlight the critical role of redox disequilibrium in As mobilization and suggest that SRB-produced sulfide may permeate to the rice rhizosphere, increasing As mobilization through Fe(III) reduction.
Read full abstract